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Abstract—Pneumonia remains a significant health challenge, 
particularly in children under five and the elderly, due to its 
high morbidity and mortality rates. Traditional diagnostic 
methods, relying on chest X-rays and clinical evaluation, are 
time-consuming and prone to errors, especially in 
resource-limited settings. This study proposes an artificial 
intelligence (AI)-based diagnostic system utilizing 
Convolutional Neural Networks (CNNs) to automate 
pneumonia detection from chest X-ray images. The model 
trained with over 5000 labeled images, achieves high accuracy 
by identifying intricate patterns indicative of pneumonia, 
including opacities and consolidations. By integrating this 
system into clinical workflows, healthcare providers can 
enhance diagnostic efficiency, reduce human error, and improve 
patient outcomes. The findings demonstrate the potential of AI 
to revolutionize pneumonia detection, addressing critical gaps in 
global healthcare delivery. 
Index Terms—pneumonia detection, AI, CNNs, chest x-ray 
analysis, deep learning. 

I.​ INTRODUCTION 
Pneumonia remains a leading cause of mortality, 

particularly among children under five years old and the 
elderly. According to the World Health Organization (WHO), 
this respiratory infection poses significant challenges in areas 
with poor air quality and limited access to healthcare 
services. Delays in diagnosis and treatment often lead to 
severe complications, emphasizing the need for rapid and 
accurate diagnostic tools. 
 

 
Fig. 1. Pneumonia coverage in children under five in a decade 

 
Traditional diagnostic methods rely on chest X-rays 

combined with physical examinations and anamnesis, 
requiring experienced medical professionals to interpret the 
results accurately. However, the high volume of cases and 
limited resources in healthcare systems often result in 
diagnostic delays and human errors. Recent advancements in 
artificial intelligence (AI), particularly deep learning 
algorithms like Convolutional Neural Networks (CNN), offer 
promising solutions to enhance the efficiency and precision 
of pneumonia detection. 
 

This study aims to develop an AI-based diagnostic 
system capable of analyzing chest X-ray images to identify 
pneumonia with high accuracy. Leveraging a dataset of over 
5,000 labeled images, the proposed model employs CNN to 
detect critical patterns and anomalies indicative of 
pneumonia. The integration of such AI systems into clinical  
workflows has the potential to improve diagnostic accuracy, 
reduce the workload on healthcare professionals, and 
ultimately enhance patient outcomes. 
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By bridging the gap between traditional diagnostic 
practices and modern AI capabilities, this research seeks to 
contribute to the broader application of AI in medical 
imaging, particularly in resource-constrained settings. The 
results of this study are expected to highlight the practical 
benefits of AI in addressing global health challenges. 

II.​ LITERATURE REVIEW 

2.1. Characteristics of Pneumonia 
Pneumonia is characterized by inflammation and 

infection in the lung tissue, particularly in the alveoli, leading 
to the accumulation of fluid or pus. This condition is 
commonly identified through X-ray imaging, which reveals 
white opacities indicating alveolar consolidation. The causes 
of pneumonia can vary, including bacterial infections that 
often present with lobar infiltrates and viral infections that 
display diffuse patterns like ground-glass opacities. 
 

Clinically, pneumonia manifests with symptoms 
such as cough, fever, chest pain, and difficulty breathing. In 
severe cases, pleural effusion and respiratory failure may 
occur, highlighting the need for timely and accurate 
diagnosis. The combination of physical examination, 
imaging, and laboratory tests forms the cornerstone of 
traditional diagnostic approaches, although these methods are 
time-intensive and dependent on the availability of skilled 
medical professionals. 
 
2.2. Declining Health Outcomes in Pneumonia Patients 

Deterioration of health in pneumonia patients occurs 
when detection and treatment are delayed. If left untreated, 
pneumonia can develop into more severe conditions, 
including respiratory failure or sepsis. The decline in health 
is also influenced by the availability of health facilities and 
the ability of medical personnel to detect the disease early. AI 
technology is expected to help speed up diagnosis so that the 
quality of treatment improves and mortality decreases. 

2.3. Application of Artificial Intelligence in Healthcare 

The use of artificial intelligence in healthcare has 
been increasing, especially in the processing of medical 
images such as X-rays and CT scans. AI is able to analyze 
patterns in images quickly and accurately, and detect 
anomalies that may be missed by medical personnel. In the 
context of pneumonia, AI can be used to speed up the disease 
identification process from X-ray images and provide initial 
recommendations, which are then confirmed by doctors. 
Such a system is already being implemented in some 
hospitals and is expected to become the standard in 
image-based diagnosis. 

2.4. Using CNN Deep Learning to analize images​
​ Convolutional Neural Networks (CNNs) are deep 
learning algorithms designed for grid-like data, such as 
images. They use convolutional layers to extract visual 
features like edges, textures, and shapes, while pooling layers 
reduce data dimensions to improve computational efficiency. 

CNNs automatically learn hierarchical patterns from data, 
making them highly effective for image-based tasks without 
requiring complex manual preprocessing. 

 
Fig. 2. Layers in CNN Model 

Convolutional Layer: Captures important visual patterns 
through convolution operations, such as detecting edges, 
textures, or other features from the input data. 

Pooling Layer: Reduces the dimensionality of the data using 
methods such as max pooling or average pooling, thereby 
reducing the number of parameters, speeding up 
computation, and improving robustness to small shifts in the 
data. 

Flatten Layer: Converts the output data from a matrix or 
tensor format to a 1-dimensional vector so that it can be 
processed by the next layer. 

Dense Layer (Fully Connected Layer): Combines all the 
extracted features into a final representation to generate a 
prediction, such as a classification (e.g. “Normal” or 
“Attack”). 

The main advantage of CNNs in image analysis lies 
in their ability to automatically learn features from data, 
making CNN highly effective for handling complex visual 
data. Unlike traditional methods that require manual feature 
design, CNNs can identify detailed patterns that are difficult 
for humans to recognize. This makes them a superior choice 
in applications such as image classification, object detection, 
and image segmentation. In addition, CNNs are also highly 
flexible as they can be adapted to different types of data and 
tasks, either through architecture modification or transfer 
learning. With the ability to utilize large training data, CNNs 
are able to deliver accurate and consistent results, making 
them an ideal technology for various image-based 
applications. 

 

 

 

 

 

III.​ METHODOLOGY 



 
 
 

 
Fig. 3. Workflow Flowchart 

​
3.1. Data Collection​
​ The dataset used in this study was obtained from 
Kaggle, specifically the "Chest X-ray Pneumonia" dataset, 
which contains 5,856 labeled chest X-ray images. The data is 
categorized into two classes: pneumonia and normal. The 
dataset was split into training, validation, and testing sets as 
follows: 

Training set: 5,216 images (1,341 normal, 3,875 pneumonia) 

Validation set: 16 images (8 normal, 8 pneumonia) 

Testing set: 624 images (234 normal, 390 pneumonia) 

The data was carefully validated to ensure the images were 
of sufficient quality, correctly labeled, and free of corruption 
or noise. 

3.2. Data Preprocessing​
​ The image is first normalized by scaling its pixel 
value parameter to a range of 0 to 1. Other Augmentation 
parameters include random rotation of up to 10 degrees, 
horizontal and vertical shift of up to 10% each of the image 
dimensions, image tilt of up to 10%, as well as random zoom 
of up to 15%. In addition, the image can also be flipped 
horizontally to reflect a different orientation. Blank areas that 
appear due to the transformation are filled using nearby 
pixels. 

The data processing process also includes preparing 
a data generator for the hard framework to efficiently load 
the dataset during training and validation. In this case, image 
normalization by resizing all images to 224x224 pixels, 
according to the model input requirements. Next, the batch 
parameter is set to 32, specifying the number of images to be 
processed at once in a batch, which helps in memory 
management during training. With the class mode parameter, 
the data is classified into two classes (binary classes), namely 

pneumonia and normal. This pre-processing technique helps 
the model to learn image variations, thus improving the 
generalization ability of the model to new data. 

3.3. Model Development​
​ A CNN-based model was designed using Python 
and the TensorFlow framework, employing the following 
architecture: 

Convolutional Layers: Three layers with increasing filter 
sizes (32, 64, and 128), each using a kernel size of 3x3 and 
ReLU activation. 

Pooling Layers: Max-pooling layers with a 2x2 filter to 
downsample the spatial dimensions of feature maps. 

Flattening Layer: Converts the 2D feature maps into a 1D 
vector. 

Dense Layers: 

1.​ A fully connected layer with 128 neurons and ReLU 
activation. 

2.​ An output layer with one neuron and sigmoid 
activation to classify images into pneumonia or 
normal categories. 

The model was optimized using the Adam optimizer with a 
learning rate of 0.001. The loss function used was binary 
cross-entropy. Training was conducted over 5 epochs with a 
batch size of 32. 

3.4. Model Evaluation​
The model's performance was assessed using the following 
metrics: 

Accuracy: Proportion of correct predictions over the total 
predictions. 

Precision: Fraction of true positive predictions among all 
positive predictions. 

Recall: Fraction of true positives correctly identified out of 
all actual positives. 

F1-Score: Harmonic mean of precision and recall, used to 
balance the trade-off between the two. 

3.5. Image Prediction​
​ The trained model was used to predict images by 
calculating the probability of pneumonia or normal classes. 
The prediction threshold was set at 0.5, with the confidence 
score calculated as follows: 

For probabilities > 0.5: Confidence = Prediction × 100 

For probabilities ≤ 0.5: Confidence = (1 - 
Prediction) × 100 



 
The final system was deployed on a web-based interface to 
facilitate user interaction, allowing users to upload images 
and view prediction results with confidence score. 

IV.​CNN MODEL PERFORMANCE EVALUATION 

Model performance evaluation needs to be done to 
determine the potential success of machine learning models 
to make predictions. Using techniques such as test accuracy, 
confusion matrix, and others. 
 
4.1. Test Accuracy 

Using a test dataset of 624 data. The test dataset that 
has been provided directly separately, is not used in the 
model training process. Its function is to provide an objective 
picture of how well the trained model can generalize to data 
that has never been seen before. 

Once the model has been trained using the training 
and validation data, the testset dataset is fed to the model. 
Accuracy is calculated as the proportion of correct 
predictions to total predictions, with the formula : 
 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦
𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
 

This evaluation method can be applied to the program by 
using model.evaluate(), with the model that has been created. 
 
4.2. Confusion Matrix 

Confusion matrix is a simple evaluation method to 
see the performance of a classification model. This 
evaluation is in the form of a table represented by a matrix. 
The confusion matrix table shows what the model guessed 
compared to the actual truth (original label). By using the 
confusion matrix, the model can be seen how often it is right 
or wrong in making predictions. 
 
For a binary classification problem (2 classes: Positive and 
Negative), the table can be described like this: 

TABLE I​
CONFUSION MATRIX EVALUATION TABLE 

 

Prediction \ 
Actual 

Positive 
(Original) 

Negative 
(Original) 

Positive 
(Prediction) 

True Positive 
(TP) 

False Positive 
(FP) 

Negative 
(Prediction) 

False Negative 
(FN) 

True Negative 
(TN) 

 
●​ True Positive (TP): The model predicts “Positive” 

and is correct. 
●​ True Negative (TN): The model predicts “Negative” 

and is correct. 
●​ False Positive (FP): The model predicts “Positive”, 

but is wrong (aka “false alarm”). 
●​ False Negative (FN): The model predicts 

“Negative”, but is wrong (aka “missed”). 
 

4.3. Precision 
Precision is how many of the model's “Positive” 

predictions are actually positive. That is, precision helps 
answer: “Of all the predicted positives, how accurate is the 
prediction of the people who are actually positive?” 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝑇𝑃)
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑇𝑃( )+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝐹𝑃)

 
By way of example, if the model predicts 10 sick people, but 
only 8 are actually sick, then precision = 8/10 = 0.8 (80%). 
 
4.4. Recall 

Recall is how many positive cases the model 
managed to find. That is, recall answers: “Of all the true 
positives, how many were found by the model?” 

 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝑇𝑃)
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑇𝑃( )+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝐹𝑁)

 
With a case example, if there are 20 sick people, and the 
model only detects 15, then recall = 15/20 = 0.75 (75%). 
 
4.5. F1-Score 

F1-Score is the average between precision and 
recall. This means that F1-Score is used to balance precision 
and recall, especially if both are important. 

 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

4.6. Support 
Support is a number that indicates the amount of 

original data in each class (Positive or Negative). That is, 
support simply calculates how many actual samples there are 
for each class. 
 
Since support evaluates the model using the test dataset, 
there are a total of 624 samples, with negative support 
samples = 234 and positive support = 390. 
 
4.7. Average 

In the model evaluation, macro average and 
weighted average are used to provide a comprehensive 
overview of the model's performance when the dataset has an 
unbalanced class distribution. 

4.7.1. Macro Average 
Macro Average calculates the metric for each class 

separately, and then takes the average regardless of the class 
size. 

 𝑀𝑎𝑐𝑟𝑜 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 = 𝑚𝑒𝑡𝑟𝑖𝑐 𝑐𝑙𝑎𝑠𝑠 1 +𝑚𝑒𝑡𝑟𝑖𝑐 𝑐𝑙𝑎𝑠𝑠 2+...+𝑚𝑒𝑡𝑟𝑖𝑐 𝑐𝑙𝑎𝑠𝑠  𝑛
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠

 
With an example, if the Precision of class A = 0.90 and the 
Precision of class B = 0.90, then Macro Average = (0.90 + 
0.90) / 2 = 0.90 (90%). 
 
4.7.2. Weighted Average 

Weighted Average calculates the metric for each 
class separately, but each metric is weighted according to the 
size of the class. Weighted Average takes into account the 
distribution of the data. 
 

 



 
 
By way of example, if Class A Precision = 0.90 (50 data), 
Class B Precision = 0.50 (30 data), then Weighted Average = 
((0.90 x 50) + (0.50 x 30)) / 80 = 0.75 (75%). 
 

V.​  RESULT AND DISCUSSION 

 
Fig. 4. Trained Model Evaluation Results 

from the image of Fig. 4, recorded results are :  

-​ Test Accuracy : 0.90 (90%) 
-​ Confusion Matrix :  

TABLE II​
CONFUSION MATRIX OF TRAINED MODEL 

Prediction \ 
Actual 

Positive 
(Original) 

Negative 
(Original) 

Positive 
(Prediction) 

204 30 

Negative 
(Prediction) 

30 360 

 
-​ Classification Report : 

TABLE III​
CLASSIFICATION REPORT OF TRAINED MODEL 

Metrics Precision Recall F1-Score Support 

Normal 0.87 0.87 0.87 234 

Pneumon
ia 

0.92 0.92 0.92 390 

Accuracy - - 0.90 624 

Macro 
Avg. 

0.90 0.90 0.90 624 

Weighted 
Avg. 

0.90 0.90 0.90 624 

 
From results provided, the pneumonia detection AI 

model showed excellent performance with an overall 
accuracy of 90%. In the Confusion Matrix, it can be seen that 

out of 390 patients with pneumonia (true positives), the 
model successfully detected 360 cases correctly, resulting in 
a recall value for pneumonia of 0.92 (92%). This indicates 
that of all patients who actually had pneumonia, 92% were 
successfully identified by the model. 

 
5.1. Focused Metrics 

With the pneumonia detection AI model created as a doctor's 
second assistant, the focus on Recall accuracy is very 
important while taking into account the medical context. 

​ If the model fails to detect a patient with pneumonia 
(False Negative), the patient will not receive the necessary 
medical attention, resulting in a fatal outcome. Therefore, the 
model should minimize FN, and this is reflected in recall. 
The recall value answers: “ Of all the patients who were 
really sick, how many did the model successfully detect? ” 

In a medical context, it is better to generate a few false 
positives (FP) (e.g., detecting pneumonia in a healthy 
patient) rather than to miss a truly sick patient. 

 

VI.​ CONCLUSION 
This study demonstrates the efficacy of AI-powered 

diagnostic systems in pneumonia detection. Utilizing 
Convolutional Neural Networks (CNNs), the proposed model 
achieved a high accuracy of 90% in detecting pneumonia 
from normal chest X-rays. This performance underscores the 
potential of integrating AI into clinical workflows to enhance 
diagnostic precision, reduce human error, and expedite 
decision-making processes. Future developments could 
explore expanding the dataset, incorporating multimodal 
diagnostics, and deploying the system in real-world 
healthcare environments to evaluate its scalability and 
robustness. 
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	Training set: 5,216 images (1,341 normal, 3,875 pneumonia) 
	Validation set: 16 images (8 normal, 8 pneumonia) 
	Testing set: 624 images (234 normal, 390 pneumonia) 
	The data was carefully validated to ensure the images were of sufficient quality, correctly labeled, and free of corruption or noise. 
	3.2. Data Preprocessing​​The image is first normalized by scaling its pixel value parameter to a range of 0 to 1. Other Augmentation parameters include random rotation of up to 10 degrees, horizontal and vertical shift of up to 10% each of the image dimensions, image tilt of up to 10%, as well as random zoom of up to 15%. In addition, the image can also be flipped horizontally to reflect a different orientation. Blank areas that appear due to the transformation are filled using nearby pixels. 
	The data processing process also includes preparing a data generator for the hard framework to efficiently load the dataset during training and validation. In this case, image normalization by resizing all images to 224x224 pixels, according to the model input requirements. Next, the batch parameter is set to 32, specifying the number of images to be processed at once in a batch, which helps in memory management during training. With the class mode parameter, the data is classified into two classes (binary classes), namely pneumonia and normal. This pre-processing technique helps the model to learn image variations, thus improving the generalization ability of the model to new data. 
	3.3. Model Development​​A CNN-based model was designed using Python and the TensorFlow framework, employing the following architecture: 
	Convolutional Layers: Three layers with increasing filter sizes (32, 64, and 128), each using a kernel size of 3x3 and ReLU activation. 
	Pooling Layers: Max-pooling layers with a 2x2 filter to downsample the spatial dimensions of feature maps. 
	Flattening Layer: Converts the 2D feature maps into a 1D vector. 
	Dense Layers: 
	1.​A fully connected layer with 128 neurons and ReLU activation. 
	2.​An output layer with one neuron and sigmoid activation to classify images into pneumonia or normal categories. 
	The model was optimized using the Adam optimizer with a learning rate of 0.001. The loss function used was binary cross-entropy. Training was conducted over 5 epochs with a batch size of 32. 
	3.4. Model Evaluation​The model's performance was assessed using the following metrics: 
	Accuracy: Proportion of correct predictions over the total predictions. 
	Precision: Fraction of true positive predictions among all positive predictions. 
	Recall: Fraction of true positives correctly identified out of all actual positives. 
	F1-Score: Harmonic mean of precision and recall, used to balance the trade-off between the two. 
	3.5. Image Prediction​​The trained model was used to predict images by calculating the probability of pneumonia or normal classes. The prediction threshold was set at 0.5, with the confidence score calculated as follows: 
	For probabilities > 0.5: Confidence = Prediction × 100 
	For probabilities ≤ 0.5: Confidence = (1 - Prediction) × 100 
	The final system was deployed on a web-based interface to facilitate user interaction, allowing users to upload images and view prediction results with confidence score. 

